
1 
 

 

 

REPORT 

 

 

 

NSF WORKSHOP ON  

 

 

Reconfigurable Sensor Systems Integrated with Artificial 

Intelligence and Data Harnessing to Enable Personalized Medicine* 

 

March 7-8, 2019 

 

Alexandria, VA 

 

 
Workshop Committee: 

 

Chair: MICHAEL DANIELE, NC State and UNC-Chapel Hill 

Co-Chair: EDGAR LOBATON, NC State 

Co-Chair: VEENA MISRA, NC State  

 

Organizer: ALPER BOZKURT, NC State 

Organizer: OMER ORALKAN, NC State 

 

Administration: C.J. GOSNELL, Center for Advanced Self-Powered Systems of Integrated 

Sensors and Technologies (ASSIST) 

 

Report Contributors:  MICHAEL DANIELE, NC State and UNC-Chapel Hill 

EDGAR LOBATON, NC State  

ALPER BOZKURT, NC State  

JEFFREY DICK, UNC-Chapel Hill 

PETER LILLEHOJ, Michigan State 

MEHDI JAVANMARD, Rutgers 

REZA GHODSSI, Maryland 

 

 

*Sponsored by National Science Foundation, USA 

 

  



2 
 

EXECUTIVE SUMMARY 

This report summarizes the presentations and discussions from a workshop convened at the 

National Science Foundation (NSF) on March 7-8, 2019 in Alexandria, VA. The focus of this 

multi-phased workshop was to determine future strategies for advancing the fundamental 

understanding and engineering of reconfigurable sensor systems by integrating hardware with data 

harnessing, real-time learning, and artificial intelligence capabilities. Specifically, this workshop 

addressed the changing application requirements, resources, and future challenges facing the 

research and development of reconfigurable sensor systems for clinical applications in the fields 

of medicine, human performance, and behavioral psychology.  

The workshop enabled the broader engineering community to discuss and highlight issues 

confronting the development and application of reconfigurable sensor system for medicine. 

Through keynote talks, panels, and breakout discussions, researchers, clinicians, and 

representatives of Government agencies from different disciplines identified challenges and 

produces a set of recommendations to advance next-generation sensor hardware. The workshop 

presenters and discussion participants highlighted the shifts in hardware needs to meet the 

expectation of data scientists in the areas of artificial intelligence and machine learning, with a 

broad base of applications and resource needs that have more thorough validation and reliability 

than that provided by current demonstration of reconfigurable sensor system hardware. In 

summary, the healthcare community’s needs are evolving rapidly, and advanced data science 

capabilities are more pervasive, emphasizing the need for researchers to accelerate the 

development of validated, user-friendly designs and platforms to support wider application of 

multimodal sensing hardware.  

We summarize the findings by the participants into key aspects as below: 

1. Putting All the Sensors Together: The advances made in flexible electronics integrating 

multiple types of substrates (i.e., silicon, flexible electrodes, etc.) have been the greatest 

breakthrough because of the way in which it has extended the reach of sensor technology, 

allowing different sensor types to be integrated and to interface with soft or flexible biological 

systems. The greatest barriers still lie in the available bio-recognition elements; accuracy and 

reliability; in “real-world” operation; packaging; electrical interconnection between flexible 

and rigid component. The application of data analytics techniques may be able to improve 

accuracy and reliability. The development of hybrid fabrication strategies, combining 3-D 

printing with standard microfabrication techniques for on-demand material delivery, can be 

considered as the next-generation approach for building reconfigurable sensors.  

2. Reliability and Reproducibility of Multimodal Sensing: With miniaturized and multimodal 

biosensing systems, lack of accuracy and precision makes quantitative analysis difficult. 

Sensitivity and reproducibility are multiplied in the multimodal systems. This is often the result 

of (1) each sensor modality having its own failure modes and limitations; (2) testing or 

demonstration in non-physiologically relevant experimental conditions.  Simulation or actual 

in vivo testing are expensive to conduct and non-standard. We have to understand how sensors 

will operate in real conditions. Standardization of sensor testing protocols, both in vitro and 

in vivo, will enable the use of advanced data analyses and provide for accurate comparisons 

across sensor modalities. 

3. Designing for Data: Machine learning and big data analytics are now an essential part of the 

scientific discovery process, complementary to and increasingly integrated with hardware 
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design. Considerations for the needs of machine learning and big data analytics should be 

included in the initial design and simulation phased of engineering reconfigurable hardware, 

i.e. being able to build enough reliable sensors to collect the necessary volume of data for 

machine learning and artificial intelligence application. Accordingly, the first identified 

challenge was the absence of collection of data to train machine-learning algorithms to enable 

an artificial intelligence approach to identifying digital biomarkers. An important resource to 

achieve this is the databanks that made available by federal agencies such as National Institute 

of Health (NIH) and Centers for Disease Control and Prevention (CDC), but they are only 

available for a limited set of sensor modalities. 

4. Medicine Requires Human-Centered Design: Reconfigurable sensor technologies are not 

readily adopted by the end users, including patients, physicians and nurses. For example, 

wearables tend to suffer from low patient compliance and digital data from new medical 

technology can be difficult to interpret by clinical staff. Operator-in-the-loop methods are 

needed to bridge interface capability gaps, ensure interoperability of the hardware, and reduce 

hazardous situations. 

Organization. The workshop was held at the NSF Headquarters on March 7-8, 2019 in 

Alexandria, VA. The workshop included approximately 75 participants, drawn from academia, 

industry, healthcare systems, Federal laboratories, and other Government agencies. A participant 

list is provided in Appendix A.  

The workshop program was chaired by Michael Daniele (NC State and UNC-Chapel Hill). 

The technical topics were formulated, and the respective panel sessions were chaired by Veena 

Misra, Edgar Lobaton, Omer Oralkan, and Alper Bozkurt (NC State). The program is provided in 

Appendix B.  

Three invited, keynote presentations spanned and highlighted the workshop. The first talk, 

presented by Aydogan Ozcan (UCLA), presented recent efforts in computer vision and machine 

learning research to replace conventional clinical practice, e.g. histological staining of biopsies. 

Dr. Ozcan’s presentation highlighted a clear need to identify clinical practices that can be 

automated.  The second talk, presented by Ieuan Clay (Novartis), illustrated the use of wearable 

sensor systems in clinical trials to define new digital biomarkers, and he stressed how the 

integration of hardware and software innovation is needed to better validate clinical outcomes. 

Specifically, Dr. Clay addressed the need to produce hardware that is user-friendly, whether that 

be the clinician or patient. This ensures the reliability of data to be analyzed and converted into 

validated digital biomarkers. The third talk, presented by Julian Goldman (Massachusetts General 

Hospital), described the experiences of clinicians using multimodal sensor systems in the 

healthcare environments. Specifically, Dr. Goldman suggests the Medical Internet-of-Things may 

be outlining the necessary roadmap that needs to be followed in designing new sensor hardware. 

Overall, the invited, keynote presentations addressed hardware, computational, and clinical 

challenges faced by researchers trying to develop sensors to enable personalized medicine.  

Panel and Breakout Sessions followed the keynote presentations. Session chairs presented a 

brief overview of the challenges and future research direction in their respective fields. Each panel 

comprised of short presentations by panelists, followed by an extended forum for discussion. 

Research challenges and solutions from each area were discussed (Section II) to provide a series 

of suggestions that outline a roadmap for the future research landscape in reconfigurable sensor 

systems (Section III). 
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I. Background in Integrated Systems for Personalized Medicine 

Intelligent, interactive, and networked sensor systems are a growing part of the 

biotechnological landscape, especially in the area of wearable, implantable, and point-of-use 

biomedical devices.[1-4] Consequently, as biological, behavioral, and psychological monitoring 

moves from the laboratory to the point-of-care, data analytics and real-time intelligence will need 

to adapt to the requirements of the healthcare system. [5-10] Advances in sensing and data capture 

allows a coupling between sensing, actuation and control to close the loop in real-time and invoke 

the need for various flexible (reconfigurable) hardware technologies. In addition, these closed- or 

human-in-the-loop solutions will require real-time decision making to realize individualized and 

personalized interaction and interventions.[11-16] These feedback loops go well beyond classic 

supervisory control and can build upon new technologies in artificial intelligence.  

Hardware for sensor systems have largely followed a “1 sensor : 1 analyte” architecture and 

relied on remote data processing and decision making, but the development of large-scale, 

reconfigurable, multi-functional systems is in its initial stages.[17-27] When discussing sensor 

networks, most of the focus is usually on systems consisting of many small, inexpensive, battery-

powered sensor nodes with limited capabilities. This is not the interest of the proposed workshop. 

This workshop is interested in the next-generation of sensor nodes that can and should have 

multiple different sensor front-ends (e.g. electrochemical, optical, acoustic, etc.) and can be 

attached to different platforms (e.g. mobile, wearable, and implantable). Combining different 

sensor modes into a single package has an immense potential to improve the reliability and 

validation of measurements made by improving data compatibility and consistency.  

Multiple configurations of sensors or their technical characteristics can be required for 

different operations (e.g. detection, classification, etc.), for different applications (e.g. diagnosis, 

prognosis, behavior identification, modification, recognition, etc.), and in different scenarios (e.g. 

hospital, emergency care, at-home, etc.). To achieve reconfigurable capabilities from current 

sensor systems will require reduction in cost, reduction in time to adaptation, and the recognition 

and integration of new data and computer science capabilities. For example, during operation, a 

continuous blood glucose monitoring system that observes a specific chemical concentration may 

be required to quickly switch to surveillance mode to detect alternative metabolites post-meal, or 

maybe the system is needed to close the loop and deliver insulin based on available learning 

models, which integrated a patient’s medical history as well as their current physiological status. 

At this moment sensor, systems are relatively inflexible to cope with such different operational 

demands.  

Designing reconfigurable hardware to take advantage of next-generation machine learning and 

artificial intelligence is both a minimally explored [28, 29], yet clearly challenging, area of 

research. Challenges for designing and engineering reconfigurable sensor systems to leverage 

capabilities in machine learning and artificial intelligence include: balancing computing among 

local, edge or cloud; meeting latency and liability requirements; privacy and security of personal 

health data; understanding role of personalized vs. aggregate data; correlation of heterogeneous 

data streams; and building predictive and personal health models for individuals using longitudinal 

and continuous data sets.  

The emerging hardware implementations for such machine learning and artificial intelligence 

for on-node processing and edge computing need to consider the associated computational and 

application-driven issues to overcome these challenges. In recent years, the hardware community 
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has been overcoming many of these major technology gaps, such as sensing modalities [30-37], 

power requirements of computation and communication [38-42], and flexible and wearable 

materials [43-48]. Accordingly, the landscape is primed to define the scientific roadmap and 

necessary sensor technologies that can enable artificial intelligence and machine learning tools 

[49-54] for improved healthcare outcomes.  

Lastly, personalized medicine is the tailoring of medical treatment to the individual 

characteristics of each patient. The approach relies on scientific breakthroughs in our 

understanding of how unique molecular and genetic profile makes a person become susceptible to 

certain diseases, and this new knowledge can only be acquired via new analytical tools and 

methods. Moreover, while the term “Personalized Medicine” has been used to describe medicine 

based on –omics, i.e. genome and proteome, there is a more encompassing view: personalized 

medicine also includes the “phenome,” which is the set of all phenotypes expressed by an 

organism, the “exposome”, which is the set of environmental conditions experiences by and 

organism, [55-57] and even the “activiome” which is to integrate the impact of everyday activities. 

Such a vision requires an acceleration of development in both multifunctional analytical hardware 

and data analytics. Many biomarkers are patient specific, which will require personalized sensor 

systems, while remote detection technologies (e.g., camera based photoplethysmography, 

temperature, activity, respiration, etc.) can be generalized and be used to assess environmental and 

behavioral conditions for all persons. Machine learning and artificial intelligence can be used to 

integrate these heterogeneous data streams to identify personal health status, personal experience, 

and any actionable abnormalities. 
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II. Summary of Panel Discussions and Breakout Sessions 

Framing Questions for Panelists 

1. What are the challenges and opportunities that exists in integrating Reconfigurable Sensor 

Systems hardware with data harnessing, machine learning and artificial intelligence in order 

to bridge the existing gaps? 

2. What are the barriers for making a paradigm shift in Personalized Medicine? 

3. Panel 1: What are the barriers in developing sensing approaches as well as in the translation 

of approaches that are reliably demonstrated in the lab? What science or engineering is 

missing for a breakthrough? 

4. Panel 2: Most commercial and research progress in hardware for personalized medicine has 

been in smart adaptation of existing electrical, optical and mechanical methods to probe the 

body. This adaptation has involved innovations in miniaturization of sensing hardware, 

making rigid electronics more conformal and flexible, and embedded systems hardware that 

increases the value of the measured data. What do you think the biggest hardware 

breakthrough so far in general and in your prospective research fields and what has been the 

greatest barriers? 

5. Panel 3: What challenges are associated with data fusion and model transfer in reconfigurable 

sensory systems? What are the challenges with ensuring reliability / verifiability of the sensor 

measurements and AI for reconfigurable sensor systems?  

6. Panel 4: In comparison to the translation of medical devices, how can the utility of new data 

science techniques become accepted in the clinic? What types of data interface do you foresee 

being needed for practitioners to adopt new data / “metrics” for diagnosis and prognosis? 

 

PANEL 1 

Point-of-Care, Wearable, and Implantable Sensors:  

Modalities and Diagnostics to Supplement Offline-Data with Point-Of-Action Intelligence 

Panel 1 and Breakout Session participants focused on identifying the state-of-the-art in sensor 

science and technologies, where current sensors are limited, and how the needs of reconfigurable 

sensor systems should guide future sensor design and research. 

The goal of sensor system development is always to create a compact system that integrates 

all required process steps and improves the key performance parameters of sensitivity, specificity, 

speed, accuracy, dynamic range, robustness, ease of use, and costs. Figure 1. Illustrates the key 

performance parameters of any sensor system, as well as classification of different sensor 

applications in personalized medicine based on their portability and intervention time. Figures are 

derived from presentation by Shantanu Chakrabartty (University of Washington, St. Louis).  

During discussion, there was clear consensus regarding the breakthroughs and challenges for 

developing reconfigurable sensor systems, viewed from the perspective of sensor design. These 

conclusions can be organized into three categories: (1) Sensor and Systems Materials, or (2) 

Accuracy Issues, and (3) Application Improvements. Herein, we will summarize the recent 

breakthroughs and upcoming challenges in both these categories, as determined by Panel 1 and 

the Breakout Session participants. 
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A. New Sensor and Systems Materials 

The first breakthrough in developing personalized biosensor systems has been the advances 

made in flexible electronics and electronics manufacturing. Integrating multiple types of substrates 

(e.g silicon, flexible electrodes, organic electronics, textiles, etc.) have been the greatest 

breakthrough because of the way in which it has extended the reach of sensor technology, allowing 

different sensor types to be integrated and to interface with soft, deformable biological systems. 

The greatest barriers to integration still lie in the electronic packaging; electrical interconnection 

between sensing systems and flexible materials and rigid CMOS components for example, 

continues to be a major issue. 3-D printing technologies (e.g. polyjet, stereolithography, two-

photon lithography) can be also considered as another major technological breakthrough in 

manufacturing for creating/prototyping miniature sensors displaying complex shapes in 3-D. The 

capability to print bio- or biocompatible materials extends to potential use for developing 

bioelectronics or biological hardware. However, the limitation in printing conductive or 

dielectric/high-K materials with on demand resolutions - essential for creating integrated circuit 

components - is a key challenge, and the development of hybrid fabrication strategies, combining 

3-D printing with standard microfabrication techniques, can be considered as the next-generation 

approach. With that said, it was not clear whether flexible electronics is truly necessary for 

wearable electronic systems given the fact that complicated circuitry can be miniaturized sub-

square centimeter sized chip using traditional microfabrication techniques.  

In addition to performance, it is important that the 

sensors dedicated to personalized medicine still need to 

be application specific. Personalized health monitors, 

e.g. wearables, need to be portable, lightweight, 

unobtrusive and inexpensive, offer high sensitivity and 

reproducibility, be validated in clinical settings, and be 

approved by the FDA. Without meeting these goals to 

date, the value of these devices and analytes is not clear.  

A recent report by (Gao et al. (Nature 2015) [58]  on 

in situ sweat monitoring was probably the most highly 

cited report in wearable continuous monitoring over the 

last decade, and resulted in a flood of research in 

wearable biosensing systems. Nevertheless, biomarkers 

in sweat, saliva, and exhaled breath condensate are not 

well known or correlated to the gold standard of blood 

tests. For example, In-situ continuous monitoring of 

protein is a dream that still has not been fulfilled, despite 

the immense use. This will require biorecognition 

elements that can be reset on demand dozens, if not 

hundreds or thousands of times, before fouling. More 

importantly, continuous or long-term monitoring with 

long lifetime is a challenge due to sensor saturation and 

degradation; any solution to this will require new bio-

recognition strategies. One of the main barriers in 

implantable sensors is limited biocompatibility and short 

operating life. There needs to be new biocompatible 

Figure 1.  (A) Parameters for successful sensor 
design will revolve around reliability. (B) Unique 

considerations for personalized medicine systems 
include system mobility and applications specific 
intervention time. 

A 

B 
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materials and/or coatings, which can enable sensors to remain operational, in vivo for several 

months. In addition, biosensors that can detect proteins without any probe capture molecule will 

be necessary to enable truly reconfigurable personalized medical systems.  

B. Accuracy Issues  

Multiple participants echoed the fact that miniaturized biosensing systems lack accuracy and 

precision, which make quantitative analysis difficult. Lab-on-chip technologies, while performing 

well at the bench, have difficulty making it out of the lab and into the clinic. Regarding complex 

matrices and analytes, after 30 years ELISA is still gold standard. There is an assumption that if a 

biosensor is good enough to be published, it probably already should be accurate. However, this 

is not the case, and we still rely on ELISAs.  Dr. Javanmard (Rutgers University) summarized a 

key issue in translating miniaturized sensor systems, “One can call this, the Elizabeth Holmes 

problem. With minimal analyte, you get close to the Poisson limit. How can one creatively leverage 

sensing systems to solve this?” 

With this challenge in mind, the Panel 1 and Breakout Session participants identified a 

potential for machine learning and artificial intelligence as a means to use the generated sensor 

data to aid in the design and “correction” of reconfigurable sensor systems. Machine learning and 

artificial intelligence account for data heterogeneity, missing data, and person-to-person 

variability. Multi-modal sensing platforms and data analytics can provide reliability and accuracy 

estimate of the measurement. While hardware innovation is on the horizon, it is not clear how 

machine learning and artificial intelligence can improve the hardware development, not only use 

the data from the hardware to improve clinical outcomes. The use of machine learning and artificial 

intelligence could improve the analytical performance, reliability and reproducibility of low cost 

sensors, such as those fabricated on paper in addition, textile. Using machine learning and artificial 

intelligence to analyze biosensing data could minimize human error for improved accuracy. The 

algorithm requirements can also help determine the necessary sampling frequencies. Low 

sampling rates could diminish the sensitivity; however, high sampling rates consume more power 

and generate large amounts of data, which require expensive storage.   

C. Applicability Improvements 

Any personalized technology needs to be easily adopted by the end users, including patients, 

physicians and nurses. Device adoptability, specifically user/patient compliance needs to be 

improved. For example, wearables tend to suffer from low patient compliance because they are 

uncomfortable or complicated. It is necessary for developers to consider the following: how long 

do specific sensors need to be worn?  Can compliance be monitored and validated? Compliance 

may be achieved by designing wearables to be as small and lightweight as possible, and improving 

the usability of medical devices through applying human-centered design principles. In particular, 

human factor needs to be considered and panelist J.C. Chiao (Southern Methodist University) 

suggested a collaboration with Art School in order to build interfaces. Ubiquitous sensing is 

promising, but must reduce costs per nodes. Obtaining Food and Drug Andministration (FDA) 

approval and Clinical Laboratory Improvement Amendments (CLIA) waiver for diagnostic device 

can require > $10 million in capital. Nevertheless, it is obvious that cheap sensors are cheap. They 

may require calibration, more expensive quality assurance and quality control (QA/QC), 

processing.  

Poor compliance issues also compound missing data and data interpretation problems. Digital 

data from new medical technology can be difficult to interpret by clinical staff. Real-time sensors 
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are real-time. Large volumes of data, potentially not relevant timescale. This leads to a necessity 

to incorporate data quality metrics in models. Aaron Mazzeo (Rutgers University) considered that 

too much data is not good, so active learning schemes may be useful, as well as explainable AI.  

Lastly, if all the hardware and software efforts are successful, for translation we much 

recognize personal monitoring is personal, leading to Privacy/Ethics issues: GPS trajectories, heart 

rate, etc. and feedback to user can influence behavior.  

In conclusion, it is the Panel 1 and Breakout sessions participants assessment that there needs 

to be a science dedicated to take existing sensors technologies, and utilize multi-modal sensing, 

data analytics to fully solve the accuracy problem. The NSF can play an important role in getting 

researchers to turn their attention to generating new methods for sensor system validation and 

reliability improvement. In other words, do not worry about building new fancy sensors, but 

innovate in the areas of sensor redundancy and reliability by using in vitro or simulated biomarker 

analyses and developing benchmarks and testbeds for a broader range of analytes (ranging from 

biochemical to biophysical markers) and standard protocols to generate data for downstream 

processing. Perhaps some more translational and convergent efforts can be supported. This may 

inform future requirements for accuracy and fidelity of real-time physiological monitoring data. A 

comparison of data quality between current commercial-off-the-shelf (COTS) devices and clinical 

monitoring devices may further inform the state of the field and may help identify the utility of 

“disposable” devices in low resource environments. 

PANEL 2 

Hardware Form Factors/System Design for Sustained Usage and Data Gathering:  

Wireless Devices, Body Area networks, Online Services 

In Panel 2 and Breakout session, the participants started with the discussion of the 

reconfiguration of sensor parameters by artificial intelligence in real time to improve system 

materials and enable power-reduction to extend battery lifetime or self-powered operation. Current 

energy harvesting devices and self-powered systems are large and bulky; therefore, there needs to 

be advancements in materials and designs to miniaturize energy harvesters, making them suitable 

for wearable and implantable applications.  

The first identified challenge towards this was the absence of collection of data to train machine 

learning algorithms to enable such an artificial intelligence approach. An important resource to 

achieve this is the databanks that made available by federal agencies such as NIH and CDC. This 

could also be achieved with the design of wearable sensors that would be accepted by majority of 

the population to gather large volumes of data. It was agreed by the participants that early versions 

of such design should focus on reliability and ergonomic robustness more than the efficiency of 

other sensor specs (e.g. sensitivity, specificity). Scalability is an important barrier both in terms of 

achieving sufficient sensor systems actively used by the population to generate such large-scale 

(big) data. Especially a need for user interaction with the device either for device maintenance or 

data entry is a hindrance towards large-scale patient/user compliance.   

In in the next generations of reconfigurable hardware, the connection between reliability versus 

predictability could be investigated. From this point of view, commercial off the shelf subsystem 

components would be more efficient for a higher impact during earlier stages, which could be 

replaced by application specific integrated circuits in the future.  Any such system design should 

keep intraoperability in mind and be compatible with and adaptable to various use case scenarios 
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related to activities of daily life. Implementation of edge processing more and more would not 

only lower down the dimensions of such devices but also reduce the computation power and help 

machine learning to be more reliable. 

In such a reconfigurability effort, sensors should be tasked and controlled, come in a library of 

sensors where a selection can be made and be software defined. Reconfigurability would allow 

sensors to learn/know how to and when to increase the sampling rate. 

Current day medical practice uses biomedical devices for diagnosis, treatment and prevention. 

While the classical statistical approaches would help with the former two, the prevention is where 

the artificial intelligence would have the most impact. The prediction speed versus accuracy will 

play an important role in reliability and use of feedback provided by the artificial intelligence for 

prediction. In this, the artificial intelligence would need to create updatable, multiscale and end-

to-end models that also would consider environmental, behavioral or sometimes psychological 

context during the collection of data in a holistic way. Such models would also enable model based 

bio- and biomedical system engineering to design next generation of reconfigurability of these 

sensors systems.  

Among all the needs of the medical field, the rare conditions affecting the majority of 

population (such as Alzheimer’s or autism) would benefit most from an artificial intelligence based 

predictability with respect to other more commonly occurring conditions with established 

statistical framework. NSF was recommended to define new grand challenges or design new 

solicitations to target such rare conditions more and enable joint programs with NIH on generation 

the relevant data using reconfigurable systems on these conditions. A longitudinal and population 

wide data collection would help artificial intelligence to figure out what goes wrong in the body, 

how it goes wrong and identify the sensors that provides highest predictability for such future 

failures and even come up with actionable feedback to avoid/prevent these. 

Several stakeholders of reconfigurable sensor systems should be considered when shaping the 

future of this area. It should be noted that use of such systems in medicine would alter the decision-

making mechanism as well as the workflow in current day medical practice. It would be unrealistic 

to expect a revolutionary change, where a potential entry point of such systems would be radiology. 

This field relies on technology both to generate objective input (such as medical imaging) during 

their decision-making in addition to supporting this decision-making (e.g. by marking the 

suspicious lesions on such images). Design of domain specific artificial intelligence that will 

support the sensors to be reconfigured to improve the outcomes of this decision-making and 

predictive accuracy would make a major contribution to this field. This in turns also affects another 

stakeholder, insurance companies, which values any prediction about the deterioration of health 

conditions. However, it is also a fact that the current day medical practice misses a roadmap how 

to provide actionable feedback based on the data collected using these reconfigurable sensor 

systems in connection with these stakeholders.  

It should be noted that both FDA and IEC works on standardizing patients’ interaction with 

medical devices, software and algorithms. Therefore, such agencies working on standards and 

approvals should be an essential part of any conversation about reconfigurable sensor systems 

from the beginning where NSF could facilitate the organization of future workshop bringing 

industry, academia, NIH and such standardization/approval institutions together. The 

reconfigurability of sensor system by artificial intelligence also would help these agencies for the 

analysis, standardization and approval of all modes of operation of such devices and algorithms. 
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Machine intelligence connected to reconfigurability of sensor systems could easily figure out what 

would go wrong and how it would go wrong in a device or algorithm using a model-based analysis 

before such failures occur in the real life. 

The interdisciplinary aspect of the entire concept of reconfigurable sensor systems (which 

needs various expertise from hardware engineering to data sciences, from applied math to 

ergonomic design, sociology and clinical medicine) requires next generation work force to be 

trained in a way that encourages curiosity in all of these disciplines while providing easy access to 

informative educational resources. Innovation at all fronts should be encouraged by NSF through 

initiating focused interdisciplinary Integrative Graduate Education and Research Traineeship 

(IGERT) programs, allocating funds for creating relevant curriculum as well as encouraging high 

schools and undergraduate institutions to organize hackathons on topics related to reconfigurable 

sensor systems supported by artificial intelligence. This is the only way to ensure enough number 

of trained individuals and interest will exist in the US during next 5 to 20 years to bridge the gap 

between various subfields and lead the field.   

Ultimately, the panel arrived at similar conclusions to Panel 1. Panel 2 also identified other 

technical challenges and barriers regarding sensor and data development: 

1. Sensor technology fouls with time, implying time-course measurements are not reliable 

and sensor use is limited to one or few individual measurements. In itself, this represents 

an opportunity to develop new electrochemical sensors, and study how artificial 

intelligence and machine learning training sets can be used to correct such issues.  

2. Barriers to advancement include the investment put into amperometric sensors. Selectivity 

is still gained by specific molecular interactions – as we all know, electrochemistry is rather 

poor in terms of speciation but cannot be beat in terms of spatial and temporal resolution 

(i.e., electrochemistry resolution is not limited by the diffraction limit of light; rather, it 

depends only on the fabrication of the electrode). The smallest electrodes to date are single 

atoms. 

3. Labs are cleaner than the field – to test efficacy for the field, one should perform 

experiments in the field or simulate the field in the laboratory. Device testing is most 

relevant when these fields and errors associated with field measurements are taken into 

account. 

4. Dimensionality reduction is important. Handling high-dimensional data dramatically 

increases power consumption. Need to adaptively learn low-dimensional structures from 

data (that are critical to the machine learning pipeline) to be measured and transmitted by 

the device. 

 

PANEL 3. 

Sensor Fusion with Machine Learning and Artificial Intelligence:  

Challenges of Integration and Informatics 

Recent advancements in wearable technologies provide an opportunity to evaluate the utility 

of physiological monitoring data to provide early indications of health status changes and generate 

new decision-making capabilities. An earlier warning of negative health outcomes (e.g. infection) 

could allow for an earlier treatment regimen and higher likelihood of positive outcomes. Panel 3 
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and Breakout Sessions participants addressed the barriers and opportunities to expand on the utility 

of physiological monitoring technologies by developing algorithms to improve the performance 

and utility of physiological health monitors. 

The principal suggestions from Panel 3 and the Breakout Session participants are (1) 

algorithms should address baseline data or groundtruthing, which is often hard to obtain; (2) 

validation of the algorithms is vital; (3) there needs to be more efforts for creating data sets that 

can be used by the machine learning community; (4) incentives may be needed in order to 

overcome language and knowledge barrier between data science and hardware experts, and 

promote integrated collaborations. 

With that said, it was repeatedly highlighted by all members of the panels and participants: 

More data and better data is required! Both data scarcity and label scarcity are the preeminent 

challenges in using the next-generation of machine learning and artificial intelligence to 

improve healthcare outcomes. In addition to a dearth of data, there are general data collection 

issues that need to be corrected across the board, including missing data, irregular sampling, poor 

signal-to-noise ratio, temporal imprecision, and data heterogeneity.  

The following characteristics should guide acquisition of data: 

1. Data analytics require clean/parsed data to combine disparate data streams and identify 

relevant data and data correlations; 

2. Data sources should be unobtrusive, persistent, broadly distributable sensors. This is 

important to ensure the sensors are not influencing the data. Ideal data streams will also 

include proxy data sources (e.g. environmental conditions or activity status); 

3. Data collection should be longitudinal, contextual (e.g. heart rate elevation in traffic), and 

correlated with health outcomes. 

While some data acquisition issues can be ascribed to interpersonal variability, many of these 

challenges can be directly overcome by better hardware design with input from data scientists. 

Improvements to new acquisition methods, devices and technological tools, include the following: 

1. Development and adoption of acquisition methods for data in more physiological 

conditions such as standing, moving, exercising; new (wearable, multimodal) sensors and 

sensor data analysis to obtain functional data, also during daily life; 

2. Acquisition of data independent from the acquisition system, the acquisition method, or 

the acquisition source; 

3. New developments in data formatting and data processing, which automatically collect, 

format the data, provide it to the end-user for assessment, and sharing. This may include 

de-noising and dimensionality reduction of the raw data and of the extracted feature space; 

4. Data formatted in a predefined standardized and certified way for clinical purposes. 

The group also identified non-technical avenues of success that would support the 

acceleration of hardware solutions into clinical outcomes: 

1. Engaging all groups (medical, engineering, data and patients) in a collaborative manner is 

essential; 

2. The collaborations between the machine learning/artificial intelligence community must 

be viewed as specific to the sensor / clinical challenge; 
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3. It would benefit the community to go beyond sequential development, i.e. the engineer 

developing the sensor, contacting the clinician for validation, and then having the data 

person doing machine learning or statistical analysis. It would be good to overlap efforts; 

4. It would be good to have a two-way interaction between hardware and software. Not just 

having hardware providing data, but the analysis guiding the hardware design (for 

example); 

5. Creating a shared dataset and library; 

6. For reconfigurable system, it would be beneficial to determine how to combine multimodal 

sources (coming from maybe even similar modalities but different locations - i.e., same 

underlying process). This could benefit from physical computational models, machine 

learning, and sensors people working together. 

Lastly, Panel 3 and Breakout Session participants identified unique issues in the culture 

difference between hardware and software developers. This requires new cooperation and culture 

changing efforts. The groups will need to start getting over Language, Style and Knowledge 

Barriers. Many participants asked how do we find the people that are willing to learn (from each 

other’s); including funding for teams that include sensor, data and clinical and human/factors; 

equivalent funding levels across the fields; seeding  EAGER or planning grants, or pre-planning 

to search for collaborators.  

Based on this discussion, the following recommendations can be made to (1) Generate a 

community and shared resources; (2) Enable cooperation and changing culture. We must identify 

ways to create a community for wearables; have centralized resources for prototype scale-up 

(GitHub for circuits / Open source designs); standardized validation protocols. 

 

PANEL 4 

Difficulties and Barriers in Making a Paradigm Shift in the Clinic 

With the advances in analytical test equipment, analyses protocols, and in understanding how 

the biomolecular compositions or their intermolecular or environmental interactions affects human 

health, we are closer to realizing viable application of personalized medicine.  

Panel 4 and Breakout Session participants considered the barriers to translation of sensor 

systems for personalize medicine. Major barriers in realizing the paradigm shift toward 

personalized medical data acquisition go back to the hardware design strategies. Barriers include, 

making sensor systems available to a broader range of population, include 1) lack of cost-effective 

analytical systems utilizing streamlined fabrication processes, 2) complexity in defining clear 

problems and determining potential solutions, requiring more communication between 

practitioners and engineers, and most importantly 3) identifying personalized markers that will 

predict disease susceptibilities and treatment responses.  

A first major step for designing new reconfigurable sensor systems is the identification of these 

markers, followed by creating adaptable sensing technologies capable of detecting patient-specific 

markers at a low enough cost to be applied to more diseases or risk factors. Adaptable 

manufacturing processes then come into play with development of distributable sensor systems. 

Thus, the key to personalized medicine is both the creation of sensing systems that accurately and 

inexpensively operate, and creating properly instrumented manufacturing systems to ensure a 

robust product, leading to improved data acquisition and ultimately better patient outcomes.  
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The participants also noted that more data/information is not always better for the end-user or 

clinician, i.e. quality is preferred over quantity.  If the data is not properly curated and delivered, 

it can have detrimental effects. One major step in utilizing these advances will be to incorporate 

hardware and software in a systematic way into the clinical decision-making process, where the 

ultimate information delivery is concise, palatable, and validated. There are multiple strategies 

necessary to collect and curate useful data into actionable information. Modified from the 

presentation by Dr. James Weimer (University of Pennsylvania), we may consider the following 

progression of questions in designing intraoperable, reconfigurable sensor systems that can be 

translated into the clinic: 

1. Use a Clinical Decision Support (CDS) design methodology 

a. How to identify, collect and label (if necessary) clinically relevant data? 

b. How to monitor CDS systems while minimizing clinical overhead? 

2. Understand the Caregiver-in-the-loop paradigm 

a. How to model caregiver-automation interactions?  How to adapt? 

b. How to monitor/quantify clinical cognitive load without increasing workflow 

overhead? 

c. How to tune/adapt system to improve patient safety? 

d. How to adjust workflow to make all the above feasible? 

e. Safety and assurance 

f. How to best adjust workflow to make CDS systems viable? 

g. If you are using machine learning, what guarantees can you REALLY make? 

h. How to formalize system assumptions and designing corresponding monitors? 

3. Designing for Assured Autonomous Medical Systems 

a. How do we design systems when physiological models are uncertain? 

b. How do we learn in the presence of inter/intra-patient variability? 

c. How do we verify system performance at design time? 

d. Monitoring and Control of Autonomous Medical Systems 

e. How do we monitor the system for anomalous behavior? 

f. How can controller LECs be personalized to the patient? 

g. How can we dynamically generate evidence for assurance? 

h. Dynamic assurance for Autonomous Medical systems? 

i. How can we assure the safety of systems with dynamic evidence? 

j. How can this information be conveyed to caregivers? 

By answering the aforementioned question, we can generate evidence for improving efficacy.  

To date, few preliminary projects using wearable sensors and point-of-care diagnostics for 

personalized health applications have been undertaken, of these, only some were able to model a 

significant number of real patients and demonstrate a concrete improvement in health outcome 

measures. Regarding the future design of reconfigurable sensor systems for personalized medicine 

and the validation of their efficacy in improving healthcare, we recommend the following distinct 

types of new projects:  

1. Engineering the large-scale deployment of established sensing methods paired with novel 

deep learning or AI to conduct clinical assessment studies to determine the safety, efficacy, 

efficiency and benefits of incorporating deep learning and AI into such tools; 
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2. Modelling methods and the further development of integrative models, including targeting 

their pre-clinical or retrospective validation;  

3. Integrating electronic health record standards into new device and sensor use protocols.  

Lastly, both hardware and software developers must strongly consider putting the clinician-in-

the-loop. Sensor and personalized health solutions were designed to return to the clinician a neatly 

package answer intended to be immediately used to make a clinical decision. In reality, because 

of their inherent complexity, many predictive models require support from an experienced 

clinician. Medical input is necessary, not only to preprocess the data, but also to provide essential 

quality assurance checks. Clinicians are trained to aggregate heterogeneous information and 

extract patterns even when information is very noisy or incomplete; computers find such tasks 

very difficult to complete.  
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III. Roadmap and Suggestions from Sensor Hardware, Data Science, and Medicine 

Reconfigurable sensor systems will provide the necessary intelligence needed to migrate from 

population-based prediction towards truly personalized medicine, which emphasizes the 

acquisition, integration, processing and application of patient-specific information. Personalized 

health models will allow patients and clinicians to become more pro-active in instituting lifestyle 

modifications and clinical surveillance for the prevention of diseases.  

The workshop presenters and discussion participants highlighted the shifts in sensor system 

needs and expectations, with the clear identification of needs that are much more transdisciplinary 

and translational than that traditionally supported. A breakthrough in the science and engineering 

of reconfigurable sensor systems for personalized medicine requires convergent instrument, data 

management, and computational capabilities to address the enormous complexity of the biological 

and behavioral differences between every patient and every disease. Improvement of health 

outcomes will only be achieved by combining technological advancement with deep clinical, 

molecular and contextual analyses.  

Simulation and modeling, measurement and instrumentation, and data analysis are 

interdependent, as an integral part of the scientific discovery and engineering development 

processes. Machine learning and big data analytics are now becoming an essential part of these 

processes, complementary to and increasingly integrated with the starting design. Accordingly, 

future research efforts must prioritize:  

1. New self-powered families of sensors for truly personalized health care based on energy 

efficient approaches and heterogeneous integration solutions in biocompatible form factors 

to extend the intervention window and to support specific prevention strategies.  

a. Provide a new generation of frictionless autonomous smart sensors at all levels 

required by health care data collection: implantable, wearable, environmental. 

b. Develop new user interfaces for life-style feedback loops and related diseases.  

c. Accepted protocols to support evaluations of sensor technologies, including formal 

processes for verification, sensitivity analysis, validation (including clinical trials), 

risk-benefit, and cost-benefit analyses, and ultimate product certification. 

2. The extension of existing data tools to support time-varying, dynamic data, and support 

multiscale interactive visualization for data defined at different time scales (data defined 

across different spatial scales); Extensions to support novel human computer interaction 

and interactive visualization that allow the usage of large-scale data from heterogeneous 

sources for knowledge discovery. 

a. Acquire, store and redistribute the ever-accumulating amounts of data per patient 

required to fulfil this goal, within a strong governance framework, which protects 

personal data from misuse and ensures privacy. 

b. Self-learning mechanistic/machine learning models translating information into 

predictions on the future development of diseases for prevention and the likely 

response to specific therapies. 

c. Approaches to analyzing disparate datasets to include data standardization and 

storage and possible identification of unique predictive parameters.  
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d. Ability to download data from many individuals in an automated, centralized, and 

timely manner. 

e. Data security and availability, including hardware to software solutions specific 

for personalized medicine data.  

3. At the clinical level, methodologies must be adapted and adopted to compare solutions 

with current standard of care. It is unlikely that current conceptual prototypes, developed 

as proofs of concept, can be effective for direct clinical translation. It will be necessary to 

re-engineer current prototypes for each specific clinical task, reengineering the user 

interface to prevention, diagnosis, prognosis, treatment planning, or monitoring. 

a. Cohort studies evaluating the correlations between physiological monitoring data 

and health record information focusing on known exposure or illness events.  

b. Evaluating the predictive performance of the models with multiple time points 

along the patient’s health record timeline. 

c. Assessing the requirement for individual baseline data versus group/no baseline 

information. Additionally, the usefulness of using “near neighbor” data to improve 

predictive capability.  

d. Evaluation of the minimum frequency of physiological monitoring data needed for 

strong correlations to health effects and optimization of the algorithm’s predictive 

power.  

In turn, these research focuses suggest several potential directions for Research 

Infrastructure and Research Support:  

Specific areas that need to be understood and addressed include integration, heterogeneity, and 

sustainability, as well as diversity and broader impact from a user and community perspective.  

1. Clearly and unambiguously delineate solicitations and investments in sensor phenomena 

research and sensor system innovation, while recognizing the former ultimately informs 

the latter.  

2. Interoperability and Reliability – across scientific instruments and domains – remain 

elusive goals, limiting opportunities for reproducibility, collaboration, and discovery. 

Consider a funding model that requires collaboration across projects to drive 

interoperability and includes an evaluation of reproducibility.  

3. Researchers need to have access to all resources and capabilities required by a modern 

workflow. The community must create a formalized approach to data and data sharing. 

This could be tied to existing resources, but data need to be accessible. Centers can provide 

storage in short term, but the long-term need is for a model to store data in perpetuity. NSF 

should explore both medium and long-term approaches. This is possible with commercial 

cloud services, but not on current academic systems.  

4. Support for effective management of individualized data, including support interfacing 

with the existing healthcare systems under the criteria of clinical adaptability. 

5. New and creative kinds of partnerships, e.g. academic and clinical, are necessary to 

sustain national research competitiveness and NSF leadership. NSF cannot do this by 
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itself but should not try to replicate NIH efforts. The demand for clinical testing 

capabilities is dramatically expanding and exceeds what NSF currently supports. 

Broader Impacts: We foresee and advocate for both research and development innovation via a 

multidisciplinary and convergent community of healthcare providers, technologists, scientists, 

mathematicians and engineers. Three general recommendations to support such a vision are 

presented below:  

1. Reconfigurable Hardware and Wetware as a Grand Challenge: adaptable biosensing, in 

silico medicine, and the development of the digital biomarkers, must be recognized as a 

Grand Challenge, where fundamental research in biomedical science, mathematical and 

computational methods, biomedical engineering, and computer science must coexist with 

more applied and translational research.  

2. Academic-Industry-Clinical Partnership: Academic  researchers  should  closely  

collaborate  with  industry  to broaden  applications,  e.g.,  amendments to current 

diagnostic test kits. Industry should invest in databases to support knowledge and document 

sharing, and to contribute to “translational ready” design tools. Clinicians should be 

incorporated as a necessary focus group to guide systems design. The research community 

should widen their efforts and participation through providing open-source testbeds and 

hardware platforms. 

3. Education and Training: Workforce training and availability remain challenges in 

biomedical microdevice design and translation. This should incorporate NSF’s unique role 

in broadening participation. We need clearer career paths in medical device engineering, 

as well as pipelines that lead to leadership. Specifically, these pipelines should permit and 

encourage the participation of non-educational institutions such as national laboratories, 

federal agencies, and hospitals/clinics. This will attract talented students to actively study 

engage in interdisciplinary activities.   

a. System reliability, validation, and performance analysis  courses  and  programs  

must  be  developed  in  universities  and  incorporated into the undergraduate and 

graduate curricula. Such courses should educate students on how to think of system 

reliability as a design parameter and goal rather than strictly aiming for 

optimization or peak performance.  

b. Publication avenues must increase for reliability, replication testing and validation 

for researchers that are actively engaged in studying the translation potential for 

sensor systems.   
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IV. CONCLUSION  

This workshop used personalized medicine as a prime example of how the sensor and sensor 

system community can think about the concept of “reconfigurability” from a secure design of 

hardware, systems, and application perspective by utilizing the rapidly evolving data science and 

artificial intelligence capabilities. The workshop presented the potential to look across the 

traditional barriers to personalized medicine and discuss how the design and performance of 

reconfigurable sensor systems should be guided and improved by both hardware considerations 

and learning/AI capabilities. The workshop participants stressed the need for having data-aware 

and robust design as an important component of hardware design, as well as a skillset of future 

workforce development and as an educational need in academic courses.  

For  many  years,  advanced data analytics has  been  treated  an  afterthought  of  sensor  design 

and multiplexed or reconfigurable sensing  has been considered merely one  of the possible  

applications for  sensor hardware. Typically, biosensors were designed and validated to execute as 

isolated, physically secure and well-defined conditions. This paradigm has been proven limited in 

value for the translation to next-generation healthcare, such as predictive population health and 

personalized medicine. It is thus essential to make serious efforts to bridge gaps between 

participating engineers/scientists, which will help overcome a variety of physical and 

technological challenges, including the following: 

1. Design of sensors with respect to form factor (size/shape), power/energy requirement, 

working environment compatibility, performance requirement (sensitivity, selectivity, 

detection limit), manufacturing cost, etc. 

2. Determining key data characteristics from the various types sensing results for more 

effective machine learning and optimization of artificial intelligence.   

3. Different types of data measured by the device require different levels of robustness, 

privacy, and accuracy in their analysis, and the outcome of the analysis by the machine 

learning pipeline should inform the device to adapt and to re-allocate its resources for 

future measurements. 

 The presented talks and panel discussions during the workshop recognized the importance of 

need for increased collaboration between the hardware, data science, and clinical communities.  

For example, a single sensing system could include a transducer and a designated application 

specific integrated circuit (hardware) with machine learning algorithms (data/computer science) 

reporting results to a cardiologist (clinical). Each of these parties has a unique design language and 

need for the capabilities of each system components. When operating exclusively, the final system 

has poor intraoperability and reliability, leading to poor reliability and efficacy. Better 

communication pipelines, education, and standardized protocols may help overcome these issues. 

In addition, there were suggestions to engage other research communities, such as human-factors 

scientists, communications, and more broadly, social and behavioral scientists to generate user 

feedback groups to provide their objectives and constraints and to better interpret and understand 

feedback from those devices.  

In conclusion, medicine and prevention have historically operated on heterogeneous, statistical 

groups. To switch focus from the “statistically best” therapy to an “individually best” therapy 

requires much more information on every patient. This will include terabytes of data, from –omics 

characterization and imaging to environmental and lifestyle recording. This healthcare revolution 
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will require acceleration of two technical developments: (1) We need to distribute many more 

sensor systems across the population, deployed in various form factors—with a particular focus 

on the development of highly reliable, autonomous, multi-modal platform and power-efficient 

computing. (2) Data generation is however not everything. We also need concepts to integrate and 

transform this data into information to predict future health and quantify the effects and side effects 

of possible therapies (or preventive measures) on every individual.  
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